Kotaro Oka, Ph.D. Chief Professor, Department of Biosciences and Informatics, Keio University

 Mg^{2+} is an important cation for maintain cellular functions and, therefore, suggested the relation of Mg²⁺ to various diseases such as cancer, obesity, type 2 diabetes and neurological diseases. Furthermore, intracellular Mg²⁺ plays roles as a second messenger in the immune system and it has been recognized as a multi-target metabolic regulator. Therefore, regulation of intracellular Mg^{2+} is critical for maintenance of cellular functions and tissue integrity. To reveal the regulatory mechanism of intracellular Mg^{2+} , we have developed Mg^{2+} sensitive fluorescence probes and imaging techniques. These intracellular Mg^{2+} imaging works revealed Mg²⁺ mobilization in pathological and physiological conditions, and mitochondria are intracellular Mg^{2+} stores. Although mitochondrial Mg^{2+} concentration ($[Mg^{2+}]_{mito}$) is normally at the similar level with cytosolic Mg^{2+} concentration ($[Mg^{2+}]_{cyto}$), mitochondria redistribute cytosolic and mitochondrial Mg²⁺ sufficient to change the cytosolic Mg²⁺ level in response to several physiological stimuli. Recent studies using novel Mg^{2+} fluorescent probe successfully visualized that Mg^{2+} concentration dynamically changes also in the mitochondria. However, it is not clear, in cells, how the changes of $[Mg^{2+}]_{mito}$ comprehensively affect the cellular energy metabolism in detail. In this presentation, I will demonstrate our recent approaches for visualizing intracellular Mg²⁺ concentration with fluorescent imaging techniques, and show the physiological function of Mg^{2+} in neuronal cells.

Selected references from our works

- Komatsu H, Iwasawa N, Citterio D, Suzuki Y, Kubota T, Tokuno K, Kitamura Y, Oka K, Suzuki K. (2004) Design and synthesis of highly sensitive and selective fluorescein-derived magnesium fluorescent probes and application to intracellular 3D Mg²⁺ imaging. *J Am Chem Soc* 126: 16353-60.
- Shindo Y, Fujii T, Komatsu H, Citterio D, Hotta K, Suzuki K, Oka K. (2011) Newly developed Mg²⁺-selective fluorescent probe enables visualization of Mg²⁺ dynamics in mitochondria. *PLoS One* 6: e23684.
- Yamanaka R, Shindo Y, Hotta K, Suzuki K, Oka K. (2013) NO/cGMP/PKG signaling pathway induces magnesium release mediated by mitoK_{ATP} channel opening in rat hippocampal neurons. *FEBS Lett* 587: 2643-8.

- Fujii T, Shindo Y, Hotta K, Citterio D, Nishiyama S, Suzuki K, Oka K. (2014) Design and synthesis of a FlAsH-type Mg²⁺ fluorescent probe for specific protein labeling. *J Am Chem Soc* 136: 2374-81.
- Shindo Y, Yamanaka R, Suzuki K, Hotta K, Oka K. (2015) Intracellular magnesium level determines cell viability in the MPP⁺ model of Parkinson's disease. *Biochim Biophys Acta* 1853: 3182-91.
- Yamanaka R, Shindo Y, Karube T, Hotta K, Suzuki K, Oka K. (2015) Neural depolarization triggers Mg²⁺ influx in rat hippocampal neurons. Neuroscience 310:731-41.
- Shindo Y, Yamanaka R, Suzuki K, Hotta K, Oka K. (2016) Altered expression of Mg²⁺ transport proteins during Parkinson's disease-like dopaminergic cell degeneration in PC12 cells. *Biochim Biophys Acta* in press.